Novel Carbinolamine Complex Derived from Ketomalonate and trans- $[CoCl_2(3,7-Diaza-1,9-diaminononane)]^+$. Synthesis and Characterization of $[Co(N-(3,7-Diaza-9-aminononyl)-\alpha-amino-\alpha-hydroxymalonato)]ClO₄·H₂O$

Takahiko KOJIMA, Takeshi USUI, Morio YASHIRO,[†] Reiko KURODA,^{††}
Shigenobu YANO,^{*†††} Sadao YOSHIKAWA,[†] and Masanobu HIDAI *

Department of Synthetic Chemistry, The University of Tokyo, Hongo, Tokyo 113

[†] Department of Applied Chemistry, Keio University, Hiyoshi, Yokohama 223

^{††} Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153

††† Department of Chemistry, Nara Women's University, Nara 630

A novel carbinolamine complex, $[Co(N-(3,7-diaza-9-aminononyl)-\alpha-amino-\alpha-hydroxymalonato)]^+$, was obtained from the reaction of ketomalonic acid and trans- $[CoCl_2(2,3,2-tet)]^+$ and the molecular structure was determined by X-ray analysis. A free OH group in the carbinolamine linkage had aromatic properties despie it binds to an sp³ carbon.

Unstable intermediates have often been proposed in many organic reactions, however, the direct determination of those structures is generally difficult. The stable high-valent metal complexes are substitution-inert in many cases and they can be available as reaction probes because they stabilize unstable molecules by coordination.

A carbinolamine is a plausible intermediate for the reaction between an amine and a ketone or an aldehyde to generate an imine.¹⁾ The molecular structures of several Co(III)-carbinolamine²⁾ and imine³⁾ complexes have been determined, however, no X-ray crystal structures of the complexes having a condensed ligand formed from an amine and ketomalonate anion (KM²⁻), have been reported.^{2c)}

Previously we reported the synthesis and characterization of α -diamine and carbinolamine complexes derived from α -aminomalonate anion (AM²⁻) and Co(III)-polyamine complexes which contained ethylenediamine (en)^{4a)} and 3,7-diaza-1,9-diaminononane (2,3,2-tet)^{4b)} as polyamine ligands. In this communication, we wish to report the successful isolation and X-ray crystal structure of a novel carbinolamine complex derived from the reaction of KM²⁻ with trans-[CoCl₂(2,3,2-tet)]ClO₄ (1).

To a suspension of the mixture of 1 (4.5 mmol) and H₂KM (4.5 mmol) in methanol (250 mL), triethylamine (30 mmol) was added slowly. After refluxing for 4 h, the reaction mixture was evaporated to

dryness. The mixture was dissolved in water and SP-Sephadex C-25 cation exchange column chromatography⁵⁾ was performed to reveal one orange main band. The band was collected and the solution was concentrated to obtain block-shaped orange crystals of the carbinolamine complex, [Co(HM-2,3,2-tet)]ClO₄·H₂O (2) (yield, 9%). ⁶⁾ The compounds were spontaneously resolved as crystals in the space group P2₁2₁2₁. ⁷⁾

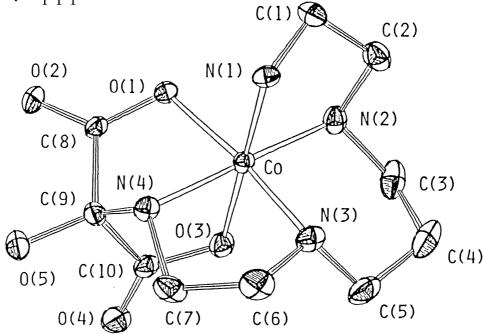


Fig. 1. ORTEP representation of complex cation of 2.

The molecular structure of the Λ -isomer of **2** is shown in Fig. 1. It was revealed that the central carbonyl carbon of KM^{2-} was bound to a primary amino group of 2,3,2-tet ligand to form a carbinolamine linkage (N(4)-C(9)-O(5)). The 2,3,2-tet moiety possesses a cis- β fashion, which is typical for the ligand.

In spite of the fact that the coordination around cobalt(III) is cis-(O, O)-Co^{III}N₄O₂, the absorption spectrum of **2** in H₂O showed the absorption maxima at 476 and 353 nm which is typical for Co^{III}N₅O chromophore. This is the common feature for the α -diamine and carbinolamine complexes derived from AM^{2-.4}) The conformation of the two five-membered chelate rings of the 2,3,2-tet moiety is δ for N(1)-C(1)-C(2)-N(2) and λ for N(3)-C(6)-C(7)-N(4). The six-membered chelate ring, N(2)-C(3)-C(4)-C(5)-N(3), has a chair form which is similar to the conformation observed for the α -diamine complex previously reported. ^{4b})

The newly generated tertiary carbon possessed normal tetrahedral geometry, and the length of the newly generated C-N bond was 1.482(8) Å which is shorter than those of α -diamine complexes. The complex has a free hydroxy group which is directed toward the outer coordination sphere, and in the crystal, a water molecule of crystallization was bound to the OH group through a hydrogen bond. A similar hydrogen bond was observed between water and the free NH₂ moiety in the case of the α -diamine complex, $[\text{Co}(\text{N-}(2-\text{aminoethyl})-\alpha, \alpha - \text{diaminomalonato})(\text{en})]^{+}$. 4a) Of our interest, the distance between the α -carbon

(C(9)) and the oxygen of the OH group (O(5)) was 1.369(8) Å. The C-O bond length in complex 2 is near to that of phenol (1.364 Å) rather than those of alcoholic C-OH groups (1.42-1.43 Å) or chloral hydrate which has α -diol structure (1.47 and 1.48 Å).⁸⁾ This indicates that the free OH group of 2 has properties similar to those of phenolic OH. Actually, the pKa value of complex 2 obtained by titration was 9.1, which was near to that of phenolic OH (phenol; pKa = 9.7).⁹⁾

Previously we obtained the identical carbinolamine complex from the reaction of 1 with $AM^{2-10,11}$). This indicates that the carbinolamine formation from AM^{2-} and 1 proceeds via the formation of the ketomalonate intermediate which is derived from the hydrolysis of an imine intermediate.

Scheme 1.

Scheme 1 shows the schematic description of the conversion of AM^{2-} into α -diamine and carbinolamine on Co(III)-polyamine complexes. The carbinolamine is formed by a nucleophilic attack of a deprotonated amino group of 2,3,2-tet ligand on the carbonyl carbon of coordinated KM^{2-} . Interestingly compound 2 was also obtained from the reaction of tartolonic acid (α -hydroxymalonic acid) with 1 under the same conditions. The reaction must include the oxidation of the tartolonic acid to KM^{2-} . This observation suggests that the α -diamine linkage is generated through the formation of an imine intermediate.

This work was partially supported by a Grant-in-Aid for Scientific Research from the ministry of Education, Science and Culture of Japan (No. 63612002, 6347035, and 02245210) and Grants from Mitsubishi Foundation and Iwatani Naoji Foundation's Research Grants.

References

- 1) R. W. Layer, Chem. Rev., 63, 489 (1963).
- 2)a) B. T. Golding, J. M. Harrowfield, and A. M. Sargeson, *J. Am. Chem. Soc.*, **96**, 3003 (1974); b) J. M. Harrowfield and A. M. Sargeson, *ibid.*, **96**, 2634 (1974); c) J. M. Harrowfield and A. M. Sargeson, *ibid.*, **101**, 1514 (1979); d) P. T. Lawson, M. G. McCarthy, and A. M. Sargeson, *ibid.*, **104**, 6710 (1982); e) J. M. Harrowfield, A. M. Sargeson, J. Springborg, M. R. Snow, and D. Tayler, *Inorg. Chem.*, **22**, 186 (1983).
- 3) J. D. Bell, A. R. Gainsford, B. T. Golding, A. J. Harlt, and A. M. Sargeson, *J. Chem. Soc.*, *Chem. Commun.*, **1974**, 980; A. R. Gainsford, R. D. Pizer, A. M. Sargeson, and P. O. Whimp, *J. Am. Chem. Soc.*, **103**, 792 (1981).
- 4)a) T. Kojima, T. Usui, T. Tanase, M. Yashiro, S. Yoshikawa, R. Kuroda, S. Yano, and M. Hidai, *Inorg. Chem.*, **29**, 446 (1990); b) M. Yashiro, A. Shimada, T. Usui, S. Yano, K. Kobayashi, T. Sakurai, and S. Yoshikawa, *J. Am. Chem. Soc.*, **107**, 4351 (1985).
- 5) The eluent was 0.02 M aqueous solution of NaClO₄.
- 6) Anal. Found: C, 26.79; H, 4.80; N, 12.22; Cl, 7.95 %. Calcd for $[Co(HM-2,3,2-tet)]ClO_4 \cdot H_2O$, $CoC_{10}H_{20}N_4O_5 \cdot ClO_4 \cdot H_2O$ (2): C, 26.53; H, 4.90; N, 12.38; Cl, 7.83 %.
- 7) Crystal data for **2**: space group, $P2_12_12_1$; a = 7.291(1) Å, b = 13.408(2) Å, c = 17.453(3) Å, V = 1675.9(5) Å³; Z = 4; d(calcd) = 1.79 g/cm³, d(obs) = 1.72 g/cm³; $\mu(Mo K\alpha) = 1.24$ mm⁻¹; No. of intensities measd, 4190; No. of data, $3122(|Fo| > 3\sigma(Fo))$; R(Rw) = 0.061(0.067).
- 8) "Molecular Structures and Dimensions," ed by O. Kennard and D. G. Watson, Crystallographic Data Centre Cambridge, International Union of Crystallography, N. V. A. Oosthoek's Uitegevers Mij Utrecht (1972), Vol. A1; "Tables of Interatomic Distances and Configuration in Molecules and Ions," ed by L. E. Sutton, the Chemical Society Special Publication No. 11, 18, The Chemical Society, London (1958, 1965); R. W. G. Wyckoff, "Crystal Structures," Interscience Pub., New York-London (1963–1971), Vols.1–6.
- 9) Titration was performed by 0.10 M NaOHaq at 25 °C.
- 10) T. Kojima, T. Usui, M. Yashiro, T. Tanase, K. Kobayashi, T. Sakurai, S. Yoshikawa, S. Yano, and M. Hidai, unpublished results.
- 11) ¹³C-NMR spectroscopic data for **2** (measured in D₂O, 1,4-dioxane as a reference): 24.1, 44.2, 44.8, 46.5, 48.2, 50.8, 57.2 (2,3,2-tet moiety), 93.0, 175.2, 175.9 (condensed hydroxymalonato moiety). These data were identical to those of a complex afforded from the reaction of **1** with AM²⁻. Anal. Found: C, 26.49; H, 4.88; N, 12.44; Cl, 7.81 %. Calcd for C₁₀H₂₀N₄O₅Co·ClO₄·H₂O: C, 26.53; H, 4.90; N, 12.38; Cl, 7.83 %.
- 12) When a suspension of 1 and H₂HM in MeOH in the presence of NEt₃ was refluxed for 3 h under air, 2 was obtained as a minor product.

(Received October 20, 1990)